В 1937 году в ученом мире произошло событие чрезвычайной важности, совершенно неожиданное для всех математиков мира. Советский ученый, Герой Социалистического Труда, лауреат Государственной премии, академик Иван Матвеевич Виноградов доказал проблему Гольдбаха для достаточно больших нечетных чисел.
Он доказал теорему: любое нечетное число, начиная с некоторого достаточно большого, есть сумма трех простых чисел. Другими словами: среди натуральных чисел существует такое достаточно большое число, за которым всякое нечетное натуральное число является суммой трех простых чисел.
Проблему Гольдбаха в указанном выше смысла И. М. Виноградов решил сложным путем, пользуясь очень тонким аппаратом современной математики.
И. М. Виноградов доказал теорему Гольдбаха для достаточно больших нечетных чисел, т. е. для нечетных чисел, больших некоторого большого числа N0. Каково значение N0? На этот вопрос ответил молодой советский математик К. Г. Бороздкин, который доказал, что N0 = еe16,038 (е - основание натуральных логарифмов; е = 2,7182...).
Чтобы доказать проблему Гольдбаха полностью, надо значительно снизить найденное К. Г. Бороздкиным число и тогда непосредственно проверить все меньшие числа.
Метод Виноградова, с помощью которого он решил проблему Гольдбаха, оказался недостаточным для решения проблемы Эйлера о представлении четных чисел в виде суммы двух простых чисел. Проблема Эйлера остается нерешенной до настоящего времени. Не решена до сих пор и проблема Гольдбаха для четных натуральных чисел (сам Гольдбах такую задачу не ставил), хотя из теоремы Виноградова следует, что всякое достаточно большое четное число есть сумма четырех простых чисел (установите это самостоятельно).
И М. Виноградов родился в селе Милолюб Псковской губернии. Вопросами математики он всегда занимался с большим увлечением. Двадцати трех лет от роду он блестяще окончил Петербургский университет и был оставлен в нем для подготовки к профессорскому званию. В 1918 году он стал профессором, а в 1929 году был избран в Академию.
Виноградову принадлежит около 120 оригинальных научных работ. Они принесли ему всемирную славу, как одному из первых математиков современности. Недаром академик Виноградов избран в члены многих научных обществ и академий мира.